The existence of embedded G-invariant minimal hypersurface

نویسندگان

چکیده

For a compact connected Lie group G acting as isometries of cohomogeneity not equal to 0 or 2 on orientable Riemannian manifold $$M^{n+1},$$ we prove the existence nontrivial embedded G-invariant minimal hypersurface, that is smooth outside set Hausdorff dimension at most $$n-7.$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Existence of Embedded Minimal Hypersurfaces

We give a shorter proof of the existence of nontrivial closed minimal hypersurfaces in closed smooth (n + 1)–dimensional Riemannian manifolds, a theorem proved first by Pitts for 2 ≤ n ≤ 5 and extended later by Schoen and Simon to any n.

متن کامل

Minimal Discrepancies of Hypersurface Singularities

We give an upper bound for the minimal discrepancies of hypersurface singularities. As an application, we show that Shokurov’s conjecture is true for log-terminal threefolds.

متن کامل

Hypersurface-invariant approach to cosmological perturbations.

Using Hamilton-Jacobi theory, we develop a formalism for solving semiclassical cosmological perturbations which does not require an explicit choice of time-hypersurface. The Hamilton-Jacobi equation for gravity interacting with matter (either a scalar or dust field) is solved by making an Ansatz which includes all terms quadratic in the spatial curvature. Gravitational radiation and scalar pert...

متن کامل

Existence of Invariant Bases

Let 7<" be a field, G a group of automorphisms of K, and M a vector space over K on which G acts in such a way that a(aD) = aa-crD for &EG, aEK, and DEM. The problem arises to find whether M has a basis consisting of invariant elements under G. In other words, letting K0 be the fixed field under G, and M0 the set of fixed elements of M under G so that Mo is a vector space over Ko, to find out w...

متن کامل

partially $s$-embedded minimal subgroups of finite groups

suppose that $h$ is a subgroup of $g$‎, ‎then $h$ is said to be‎ ‎$s$-permutable in $g$‎, ‎if $h$ permutes with every sylow subgroup of‎ ‎$g$‎. ‎if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|‎, ‎|h|)=1$)‎, ‎then $h$ is called an $s$-semipermutable subgroup of $g$‎. ‎in this paper‎, ‎we say that $h$ is partially $s$-embedded in $g$ if‎ ‎$g$ has a normal subgroup $t$ such that $ht...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2021

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-020-01804-7